
Arguably the simplest kind of action result that is defined by ASP.NET
Core MVC is the collection of Status Code Results. These results
merely return an HTTP status code to the client.

OkResult

The OkResult (short method: Ok()) return the 200 OK status code.

public IActionResult OkResult()
{
 return Ok();
}

CreatedResult

The CreatedResult (short method: Created()) returns 201 Created with a
URL to the created resource.

public IActionResult CreatedResult()
{
 return Created("http://example.org/myitem", new { name = "testitem" });
}

NoContentResult

The NoContentResult (short method: NoContent()) returns a 204 No
Content status code, indicating that the server successfully processed
the request, but that there is nothing to return.

public IActionResult NoContentResult()
{
 return NoContent();
}

BadRequestResult

The BadRequestResult (short method: BadRequest()) return 400 Bad Request,
which indicates that the server cannot process the request due to an
error in said request. This is often used in APIs when validation of the
request fails (and there isn't a more specific code that would fit better).

public IActionResult BadRequestResult()
{
 return BadRequest();

}

UnauthorizedResult

The UnauthorizedResult (short method: Unauthorized()) returns 401
Unauthorized, indicating that the request cannot be processed because
the user making the request doesn't have the appropriate
authentication to do so (meaning this status code should really have
been called 401 Unauthenticated).

public IActionResult UnauthorizedResult()
{
 return Unauthorized();
}

NotFoundResult

The NotFoundResult (short method: NotFound()) returns the 404 Not
Found status code, indicating that the requested resource, for whatever
reason, was not found on the server.

public IActionResult NotFoundResult()
{
 return NotFound();
}

UnsupportedMediaTypeResult

The UnsupportedMediaTypeResult, which doesn't have a short method at the
time of writing, returns 415 Unsupported Media Type, indicating that the
media type (e.g. the Content-Type header on the request) is not
supported by this server. For example, a server might return this
status code if the user attempts to upload an image in the .bmp format,
but the server only accepts .jpeg.

public IActionResult UnsupportedMediaTypeResult()
{
 return new UnsupportedMediaTypeResult();
}

Other Status Codes

The above status code results do not cover all the possible HTTP status
codes (of which there are many). For situations in which you need to
return a status code which isn't given a dedicated action result, we can
use the generic StatusCodeResult (short method: StatusCode()).

public IActionResult StatusCodeResult(int statusCode)
{
 return StatusCode(statusCode);
}

Status Code with Object Results

These action results are, for the most part, overloads of the results
seen in the previous section. However, they are handled differently by
the browser or other requesters due to content negotiation.

OkObjectResult

The OkObjectResult returns 200 OK as well as an object.

public IActionResult OkObjectResult()
{
 var result = new OkObjectResult(new { message = "200 OK", currentDate =
DateTime.Now });
 return result;
}

CreateObjectResult

The CreatedObjectResult returns 201 Created and a custom object.

public IActionResult CreatedObjectResult()
{
 var result = new CreatedAtActionResult("createdobjectresult", "statuscodeobjects", "",
new { message = "201 Created", currentDate = DateTime.Now });
 return result;
}

BadRequestObjectResult

The BadRequestObjectResult does exactly what you think it does; it
returns 400 Bad Request and an object.

public IActionResult BadRequestObjectResult()
{

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

 var result = new BadRequestObjectResult(new { message = "400 Bad Request",
currentDate = DateTime.Now });
 return result;
}

NotFoundObjectRequest

I imagine by now you're seeing the pattern?
The NotFoundObjectRequest returns 404 Not Found and an object.

public IActionResult NotFoundObjectResult()
{
 var result = new NotFoundObjectResult(new { message = "404 Not Found",
currentDate = DateTime.Now });
 return result;
}

ObjectResult

For scenarios which aren't covered by the above types, we have
the ObjectResult class. It returns the specified status code and an object.

public IActionResult ObjectResult(int statusCode)
{
 var result = new ObjectResult(new { statusCode = statusCode, currentDate =
DateTime.Now });
 result.StatusCode = statusCode;
 return result;
}

Redirect Results

Sometimes we will need to tell the client (e.g. the browser) to redirect
to another location. That's where the redirect results come in: they tell
the client where to redirect to. Sometimes we just need to go to
another action in the same project, but other times we will need to
redirect to an external resource.

RedirectResult

The basic RedirectResult class (short method: Redirect()) redirects to a
specified URL.

public IActionResult RedirectResult()

{
 return Redirect("https://www.exceptionnotfound.net");
}

LocalRedirectResult

The LocalRedirectResult (short method: LocalRedirect()) redirects to a
URL within the same application. For example, if your site
is http://www.mysite.com and you want to redirect to the
URL http://www.mysite.com/redirects/target (e.g. the "target" action in
the "redirects" controller), you could do so like this:

public IActionResult LocalRedirectResult()
{
 return LocalRedirect("/redirects/target");
}

RedirectToActionResult

The very common RedirectToActionResult class (short
method: RedirectToAction()) redirects the client to a particular action
and controller within the same application. If you wanted to do the
same redirect as in the LocalRedirectResult example, you would do the
following:

public IActionResult RedirectToActionResult()
{
 return RedirectToAction("target");
}

RedirectToRouteResult

ASP.NET Core MVC has the concept of Routing, by which we can
create URL templates which map to specific controllers and actions.
Correspondingly, we also have the result RedirectToRouteResult (short
method: RedirectToRoute()) which redirects to a specific route already
defined in the application.
Let's say we have the following route defined in our Startup.cs class:

app.UseMvc(routes =>
{
 routes.MapRoute(

http://www.mysite.com/
http://www.mysite.com/redirects/target

 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});

We could redirect using that specific route and
the RedirectToRoute() short method and end up at the same Target action
as the previous two examples:

public IActionResult RedirectToRouteResult()
{
 return RedirectToRoute("default", new { action = "target", controller = "redirects"
});
}

File Results

If we need to return a file to the requester, the File Results let us do so
using a variety of formats.

In this demo, we have a file called pdf-sample.pdf in the
wwwroot/downloads folder, and we will use that file to demonstrate
how various File Result classes work.

FileResult

The basic FileResult class (short method: File()) returns a file at a given
path. In our case, the path is /wwwroot/downloads, and so our action
will look as follows:

public IActionResult FileResult()
{
 return File("~/downloads/pdf-sample.pdf", "application/pdf");
}

Note that "application/pdf" is the MIME type associated with this file.

FileContentResult

There may come a time when we only want to return the content of a
given file as a byte array (byte[]), not the entire file. For this scenario,
we can use the FileContentResult class. Note that we still need to specify
a MIME type:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types

public IActionResult FileContentResult()
{
 //Get the byte array for the document
 var pdfBytes = System.IO.File.ReadAllBytes("wwwroot/downloads/pdf-sample.pdf");

 //FileContentResult needs a byte array and returns a file with the specified content type.
 return new FileContentResult(pdfBytes, "application/pdf");
}

VirtualFileResult

We can also use the VirtualFileResult class to get files out of the
/wwwroot folder in our project, like so:

public IActionResult VirtualFileResult()
{
 //Paths given to the VirtualFileResult are relative to the wwwroot folder.
 return new VirtualFileResult("/downloads/pdf-sample.pdf", "application/pdf");
}

PhysicalFileResult

Finally, if we need to get a file from a physical path on our server that
isn't necessarily part of our project, we can use
the PhysicalFileResult class:

public IActionResult PhysicalFileResult()
{
 return new PhysicalFileResult(_hostingEnvironment.ContentRootPath +
"/wwwroot/downloads/pdf-sample.pdf", "application/pdf");
}

Note that _hostingEnvironment.ContentRootPath is the path to the
application root, not the /wwwroot folder.

Content Results

The final set of Result classes are the Content Result classes, which are
designed to return various kinds of content to the controller.

ViewResult

Possibly the most basic Result class in all of ASP.NET Core MVC is
the ViewResult class (short method: View()), which returns a view.

public IActionResult Index()
{
 return View();
}

Note that, by default, the View() method returns a view with the same
name as the action it is called from, in a folder with the same name as
the controller. In our case, the controller is "Content" and the action is
"Index" so ASP.NET Core MVC will look for a file at
/Views/Content/Index.cshtml. You can specify that other views get
returned by using overloads of the View() short method.

PartialViewResult

It is also possible to return a partial view from an action using
the PartialViewResult class (short method: PartialView()), like so:

public IActionResult PartialViewResult()
{
 return PartialView();
}

In our demo, the code above will look for a view named
"PartialViewResult" in both the /Views/Content directory and the
/Views/Shared directory, and will find it in /Views/Shared.

JsonResult

You can easily return JavaScript Object Notation (JSON) content from
your application by using the JsonResult class (short method: Json()).

public IActionResult JsonResult()
{
 return Json(new { message = "This is a JSON result.", date = DateTime.Now });
}

ContentResult

If you need to return content which doesn't fall into one of the above
categories, you can use the general ContentResult object (short
method: Content()) to return your content. In our demo, we will return
a simple message, but you can use this class to return more complex
content by specifying the MediaTypeHeaderValue or the content type.

https://docs.microsoft.com/en-us/aspnet/core/mvc/views/partial
https://www.json.org/
https://msdn.microsoft.com/en-us/library/system.net.http.headers.mediatypeheadervalue(v=vs.118).aspx

public IActionResult ContentResult()
{
 return Content("Here's the ContentResult message.");
}

Summary

The Action Result classes in ASP.NET Core MVC provide a significant
chunk of the functionality you'll be using in your controllers. They
return status codes, objects, files, other content, and even redirect the
client. As you get more familiar with ASP.NET Core MVC and its
functionality, these classes will become second nature; until then, use
this post as a quick reference to get your code written.

	OkResult
	CreatedResult
	NoContentResult
	BadRequestResult
	UnauthorizedResult
	NotFoundResult
	UnsupportedMediaTypeResult
	Other Status Codes
	Status Code with Object Results
	OkObjectResult
	CreateObjectResult
	BadRequestObjectResult
	NotFoundObjectRequest
	ObjectResult
	Redirect Results
	RedirectResult
	LocalRedirectResult
	RedirectToActionResult
	RedirectToRouteResult
	File Results
	FileResult
	FileContentResult
	VirtualFileResult
	PhysicalFileResult
	Content Results
	ViewResult
	PartialViewResult
	JsonResult
	ContentResult
	Summary

